SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Neural Networks and Fuzzy Logic (20EE0239)
Course \& Branch: B.Tech - EEE
Year \& Sem: IV-B.Tech \& I-Sem

Regulation: R20

UNIT -I
FUNDAMENTALS OF ARTIFICIAL NEURAL NETWORKS

1	a	Explain organization of human brain	[L1][CO1]	[6M]
	b	Discuss the functioning of biological neuron	[L2][CO1]	[6M]
2	a	How artificial neuron is inspired from the biological neuron? Explain.	[L2] [CO1]	[6M]
	b	Explain the basic architecture of McCulloch - Pitts neuron model.	[L3] [CO1]	[6M]
3	a	Explain characteristics of Artificial neural network.	[L2] [CO1]	[6M]
	b	What is generalization? Explain.	[L2] [CO1]	[6M]
4	a	For the network shown in figure, calculate the net input to the neuron?	[L3] [CO1]	[6M]
	b	How do Neural Networks Work?	[L1] [CO1]	[6M]
5		Explain types of activation functions used in artificial neural network	[L2] [CO1]	[12M]
6	a	What are the advantages of neural networks over conventional computers?	[L1][CO1]	[6M]
	b	Discuss the applications of ANN.	[L2] [CO1]	[6M]
7		In detail, explain an Architectures of Neural Network with suitable figures	[L2] [CO1]	[12M]
8		Try to implement XOR problem with two inputs and discuss on it.	[L4] [CO1]	[12M]
9	a	Implement a perceptron to solve simple AND problem with two inputs.	[L4] [CO1]	[6M]

UNIT -II
SUPERVISED NETWORKS

1	a	Explain Supervised learning in detail with block diagram.	[L1][CO2]	[4M]
	b	Give the perceptron weight updating rule and the learning algorithm	L3] [CO2]	[8M]
2	a	Justify, why single layer perceptron network could not solve even XOR problem.	[L4][CO2]	[6M]
	b	Derive the equation for weight change for discrete perceptron network.	[L3] [CO2]	[6M]
3		Find the total error at the output for a given neural network.	[L3] [CO2]	[12M]
4		Explain input layer, hidden layer \& output layer computations in Backpropagation Network.	[L2] [CO2]	[12M]
5	a	Explain how supervised learning happens in neural networks with example.	[L2] [CO2]	[7M]

	b	Why We Need Backpropagation?	[L2] [CO2]	[5M]
6		Explain the weight adjustment procedure IN MLFFN using Back propagation algorithm	[L1] [CO2]	[12M]
7	a	Define Learning factors. Explain the learning factors in Back propagation Algorithm	[L2] [CO2]	[10M]
	b	What is the objective function of gradient descent?	[L1] [CO2]	[2M]
8	a	Explain about Back Propagation learning in detail.	[L2] [CO2]	[6M]
	b	List the advantages and disadvantages of BPA	[L1] [CO2]	[6M]
9	a	In the given Neural network, compute the total error at the output.	[L3][CO2]	[12M]
1	a	How does Perceptron work?	[L1] [CO2]	[6M]
	b	Describe about the application of Neural networks to electric load forecasting	[L2] [CO2]	[6M]

UNIT -III
ASSOCIATIVE MEMORIES

1	a	What is Associative Memory? Explain it in detail.	L1][CO3]	[4M]
	b	Train auto associative memory network to find optimal weight matrix using outer product rule to store input row vector $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$] and $\left[\begin{array}{llll}-1 & 1 & 1\end{array}-\right.$ 1]. Find the weight matrix and check with test vector using [lllll $\left.1 \begin{array}{lll}1 & 1 & 1\end{array}\right]$ and $\left[\begin{array}{llll}-1 & 1 & 1 & -1\end{array}\right]$	L4][CO3]	[8M]
2	a	Describe about Bidirectional Associative Memory with its architecture.	[L2] [CO3]	[8M]

	b	Why BAM is required and its limitation.							[L2] [CO3]	[4M]
3	a	Suppose one has $\mathrm{N}=3$ with the pattern pairs given by, $\left.\begin{array}{l} \mathrm{A} 1=\left[\begin{array}{lllll} 1 & 0 & 0 & 0 & 0 \end{array}\right], \mathrm{l} \end{array}\right], \mathrm{B} 1=\left[\begin{array}{lllll} 1 & 1 & 0 & 0 & 0 \end{array}\right]$ $\mathrm{A} 3=\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 1\end{array} 1\right]$, $\mathrm{B} 3=\left[\begin{array}{lllll}0 & 1 & 1 & 1 & 0\end{array}\right]$, retrieve correct output using input							[L4][CO3]	[8M]
	b	Distinguish Auto associative \& Hetero associative memories.							[L2] [CO3]	[4M]
4	a	Write an Algorithm to store and recall of BAM							[L3][CO3]	[4M]
	b	Train auto associative memory network to find optimal weight matrix using outer product rule to store input row vector [10001] and [1111 1]. Find the weight matrix and check with test vector using [10011] and $\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$							[L4][CO3]	[8M]
5	a	Explain about Pattern Recognition with example.							[L2][CO3]	[6M]
	b	With example, explain how to calculate Hamming Distance							[L2][CO3]	[6M]
6	a	With architecture and algorithm explain about Discrete Hopfield Network.							[L2][CO3]	[7M]
	b	Compute how to store and recall two associations, $\mathrm{A} 1: \mathrm{B} 1$ and $\mathrm{A} 2: \mathrm{B} 2$. - $\quad \mathrm{A} 1=(1,0,1,0,1,0), \mathrm{B} 1=(1,1,0,0)$ - $\quad \mathrm{A} 2=(1,1,1,0,0,0), \mathrm{B} 2=(1,0,1,0)$							[L3][CO3]	[5M]
7		Train bidirectio S3, S4 to the o are in binary fo	$\begin{aligned} & \text { onal a } \\ & \text { utput } \\ & \text { rm. C } \\ & \hline \text { S1 } \\ & \hline 1 \\ & \hline 1 \\ & \hline 0 \\ & \hline 0 \\ & \hline \end{aligned}$	iativ in the S2 0 1 0 0	$\begin{aligned} & \text { work } \\ & 1, \mathrm{~T} \\ & \text { ght } \\ & \hline \text { S3 } \\ & \hline 0 \\ & \hline 0 \\ & \hline 0 \\ & \hline \end{aligned}$	tore ainin rs in S4 0 0 1 1	vec ut a ar fo T1 0 0 1	$S=S 1, S 2$, rget pairs $T 2$ 1 1 0 0	[L4][CO4]	[12M]
8	a	What are the phases involved in pattern recognition process and Explain in detail.							[L2][CO4]	[12M]
	b	What are the applications of pattern recognition.							[L2][CO4]	[12M]
9		Construct and test a BAM network t associate letters $\mathrm{E} \& \mathrm{~F}$ with simple bipolar input output vectors. Target output for E is $(-1,1)$ and for F is $(1,1)$. Display matrix size is $5^{*} 3$. Input patterns are,							[L4][CO4]	[12M]

10	Explain about types of associative memories along with architecture and algorithm.	[L2][CO4]	[12M]

UNIT -IV
 CLASSICAL AND FUZZY SETS

1	a	Define membership function. What are the membership functions used in fuzzy designing?	[L1][CO5]	[6M]
	b	Explain fuzzy intersection operation	[L2][CO5]	[6M]
2	a	Compare and contrast Fuzzy vs Crisp	[L2][CO5]	[6M]
	b	Determine the union and intersection of the fuzzy sets, where $\mathrm{A}=$ $\{(1.0 .1) .(2.0 .5) .(3,0.8),(4,1.0),(5.0 .7) .(6.0 .2)\}$ and $B=\{(1.1)$. (2.0.8), (3.0.4), (4.0.1)\}	[L3][CO5]	[6M]
3		Explain Operations performed on crisp sets using given datas, $\begin{aligned} & X=\{1,2,3,4,5,6,7,8,9\} \\ & A=\{1,2,3,4,5\} \\ & B=\{3,4,5,6\} \\ & C=\{6,7,8,9\} \end{aligned}$	[L3][CO5]	[12M]
4		What are the operations performed on fuzzy sets. Explain it in detail.	[L2][CO5]	[12M]
5	a	Explain Cartesian product on fuzzy sets.	[L2][CO5]	[6M]
	b	Discuss how fuzzy relations are formed based on Cartesian product.	[L2][CO5]	[6M]
6		Give the properties of crisp sets. By using the following sets, $\begin{aligned} & X=\{1,2,3,4,5,6\} \\ & A=\{1,2,3\}, \\ & B=\{2,3,4\}, \\ & C=\{5,6\} \end{aligned}$	[L3][CO5]	[12M]
7	a	Consider two fuzzy subsets of the set $X, X=\{a, b, c, d, e\}$ referred to as A and B. $A=\{1 / \mathrm{a}, 0.3 / \mathrm{b}, 0.2 / \mathrm{c} 0.8 / \mathrm{d}, 0 / \mathrm{e}) \text { and } B=\{0.6 / \mathrm{a}, 0.9 / \mathrm{b}, 0.1 / \mathrm{c}, 0.3 / \mathrm{d},$	[L3][CO5]	[7M]

	$0.2 / \mathrm{e}\}$ Find:. (i) Complement. (ii) Union. (iii) Intersection iv) Difference			
	b	$\begin{aligned} & \text { Consider two fuzzy sets of the set } \mathrm{A}=\{(\mathrm{a} 1,0.2),(\mathrm{a} 2,0.7),(\mathrm{a} 3,0.4)\} \\ & \mathrm{B}=\{(\mathrm{b} 1,0.5),(\mathrm{b} 2,0.6)\} \\ & \text { Find,the relation } \mathrm{R}(\mathrm{AxB}) \end{aligned}$	[L3][CO5]	[5M]
8	a	Explain the Features of Membership Functions	[L2][CO5]	[5M]
	b	Give the properties of fuzzy sets.	[L2][CO5]	[7M]
9		Consider a set $\mathrm{P}=\mathrm{P} . \mathrm{P}_{12}, \mathrm{P}, \mathrm{P}$, of four varieties of paddy plants, set D $=\left\{\mathrm{D} 1, \mathrm{D}_{2}, \mathrm{D}_{3}, \mathrm{D}_{4}\right\}$ of the various diseases affecting the plants and $S=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ be the common symptoms of the diseases. Let R be a relation on PxD and S be a relation on DxS Obtain the association of the plants with the different symptoms of the diseases using max-min composition	[L3][CO5]	[12M]
10	a	What is fuzzy logic? Explain it in detail	[L2][CO5]	[6M]
	b	What is the sources fuzzy information? and explain each.	[L2][CO5]	[6M]

UNIT -V
 FUZZY LOGIC SYSTEMS

$\mathbf{1}$	a	What are the basic building blocks in fuzzy logic ?	LL1][CO6]	$[6 \mathrm{M}]$
	b	What are the advantages of fuzzy logic control?	[L1][CO6]	$[6 \mathrm{M}]$
$\mathbf{2}$		Explain fuzzy inference using Modus ponens and Modus tollens.	[L2][CO6]	$[12 \mathrm{M}]$
$\mathbf{3}$		Justify, how temperature control is achieved by using fuzzy logic.	[L4][CO6]	$[12 \mathrm{M}]$
$\mathbf{4}$		Explain fuzzy rule based system in fuzzy logic.	[L3][CO6]	$[12 \mathrm{M}]$
$\mathbf{5}$	a	Why defuzzification is important in fuzzy logic.	[L3][CO6]	$[6 \mathrm{M}]$
	b	What are the applications of fuzzy logic.	[L2][CO6]	$[6 \mathrm{M}]$
	a	List out different defuzzification methods available.	[L2][CO6]	$[6 \mathrm{M}]$
	b	Explain any one of the defuzzification method.	$[6 \mathrm{M}]$	

